大家好,我是小百,我來為大家解答以上問題。二次函數(shù)的交點(diǎn)式,二次函數(shù)的頂點(diǎn)式很多人還不知道,現(xiàn)在讓我們一起來看看吧!
二次函數(shù)的頂點(diǎn)坐標(biāo)是(h,k),公式為y=a(x-h)2+k(a≠0,a、h、k為常數(shù)),對稱軸為直線x=h,頂點(diǎn)的位置特征和圖像的開口方向與函數(shù)y=ax2的圖像相同,當(dāng)x=h時(shí),y最大(?。┲?k,有時(shí)題目會(huì)指出讓你用配方法把一般式化成頂點(diǎn)式。
二次函數(shù)(quadratic function)的基本表示形式為y=ax2+bx+c(a≠0)。二次函數(shù)最高次必須為二次, 二次函數(shù)的圖像是一條對稱軸與y軸平行或重合于y軸的拋物線。二次函數(shù)表達(dá)式為y=ax2+bx+c(且a≠0),它的定義是一個(gè)二次多項(xiàng)式(或單項(xiàng)式)。如果令y值等于零,則可得一個(gè)二次方程。該方程的解稱為方程的根或函數(shù)的零點(diǎn)。二次函數(shù)的頂點(diǎn)坐標(biāo)是(h,k),公式為y=a(x-h)2+k(a≠0,a、h、k為常數(shù)),對稱軸為直線x=h,頂點(diǎn)的位置特征和圖像的開口方向與函數(shù)y=ax2的圖像相同,當(dāng)x=h時(shí),y最大(小)值=k.有時(shí)題目會(huì)指出讓你用配方法把一般式化成頂點(diǎn)式。
二次函數(shù)的三種形式如下:
1、一般式:y=ax2+bx+c(a≠0,a、b、c為常數(shù)),則稱y為x的二次函數(shù)。
2、頂點(diǎn)式:y=a(x-h)2+k(a≠0,a、h、k為常數(shù))
3、交點(diǎn)式(與x軸):y=a(x-x1)(x-x2)(a≠0,x1、x2為常數(shù))
二次函數(shù)圖像與X軸交點(diǎn)的情況如下:
當(dāng)△=b2-4ac>0時(shí),函數(shù)圖像與x軸有兩個(gè)交點(diǎn)。
當(dāng)△=b2-4ac=0時(shí),函數(shù)圖像與x軸只有一個(gè)交點(diǎn)。
當(dāng)△=b2-4ac<0時(shí),函數(shù)圖像與x軸沒有交點(diǎn)。
本文到此講解完畢了,希望對大家有幫助。