大家好,我是小百,我來為大家解答以上問題。排列組合c和a,排列組合c很多人還不知道,現(xiàn)在讓我們一起來看看吧!
1、
1、排列A(n,m)=n×(n-1)……(n-m+1)=n!/(n-m)!(n為下標,m為上標),組合C(n,m)=P(n,m)/P(m,m)=n!/m!(n-m)!。排列組合是組合學最基本的概念。排列就是指從給定個數(shù)的元素中取出指定個數(shù)的元素進行排序。組合則是指從給定個數(shù)的元素中僅僅取出指定個數(shù)的元素,不考慮排序。
2、排列的定義:從n個不同元素中,任取m(m≤n,m與n均為自然數(shù),下同)個不同的元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數(shù),叫做從n個不同元素中取出m個元素的排列數(shù),用A(n,m)表示。計算公式為:A(n,m)=n×(n-1)……(n-m+1)=n!/(n-m)!
3、組合的定義:從n個不同元素中,任取m(m≤n)個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù)。用符號 C(n,m) 表示,計算公式為:C(n,m)=P(n,m)/P(m,m)=n!/m!(n-m)!。
4、其他排列與組合公式 從n個元素中取出m個元素的循環(huán)排列數(shù)=A(n,m)/m=n!/m(n-m)!. n個元素被分成k類,每類的個數(shù)分別是n1,n2,...nk這n個元素的全排列數(shù)為 n!/(n1!×n2!×...×nk!). k類元素,每類的個數(shù)無限,從中取出m個元素的組合數(shù)為C(m+k-1,m)。
本文到此講解完畢了,希望對大家有幫助。